

- IIT JEE \& NEET Faculty (KOTA)
- Top Physics Faculty on Unacademy.
- 8+ years of teaching experience
- Research work with HC Verma sir at IIT Kanpur
- Produced ranks like AIR 6, AIR 10 etc.

PHYSICSLIVE

10.9 M mins

> Follow

Dr Amit Gupta
5.4M mins

Follow
6.4 M min

Ajay Mishra (AKM)
7M mins
Follow

Follow
11.8 M mins
33. Pranav Pundarik 7.8 M mins

Follow

Chandramauli maurya
4.4 M mins

Follow

Tamanna Chaudhary
4.2 M mins

Follow

Shailendra Tanwar
4.5

Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS and learn from India's Top Faculties.

24 months
No cost EMI
₹50,400
₹25,200 $+10 \%$ OFF $\ddagger 4,667$

12 months
No cost EMI
₹ 34,650
+10\% OFF ₹3,208-
6 months
No cost EMI
,

NEET
 Physics DPP

DPP-3 Spherical Mirrors By PRATEEK JAIN SIR

```
Zunacademy
```

Q) The centre of sphere of which the reflecting surface of a spherical mirror is a part is called?
(a) Pole
(c) Radius of curvature
(b) Aperture

Join Unacadeny PLUS Referral Code :
Physicslive

Ans. d

$c=$ centre of curvature.

```
-unacademy
```

Q) An object is placed 60 cm from a spherical convex mirror If the mirror forms a virtual image 20 cm from the mirror, what's the magnitude of the mirror's radius of curvature?
(a) 120 cm
(c) 30 cm

$$
\text { (d) } 15 \mathrm{~cm}
$$

Ans. b

$$
\begin{aligned}
& u=-60 \mathrm{~cm} . \\
& v=+20 \mathrm{~cm}, \\
& \frac{1}{v}+\frac{1}{u}=\frac{1}{f} \\
& \frac{1}{20}+\frac{1}{-60}=\frac{1}{f} \Rightarrow \frac{1}{f}=\frac{60-20}{20 \times 60} \\
& \frac{1}{f}=\frac{y 0 z}{1206030} \Rightarrow f=+30 \mathrm{~cm} \\
& R=2 f=60 \mathrm{~cm}
\end{aligned}
$$

Q) The position of the image of 1 cm tall object which is placed 8 cm in front of a concave mirror of radius of curvature 24 cm is:
(a) 24 cm
(b) 25 cm f(c) 26 cm

Physicslive

Ans. a

- Concave mirrar:

$$
\begin{gathered}
|R|=24 \mathrm{~cm} \\
f=-\left(\frac{R}{2}\right)=-\left(\frac{24}{2}\right) \\
f=-12 \mathrm{~cm} \\
u=-8 \mathrm{~cm} \\
\frac{1}{v}+\frac{1}{u}=\frac{1}{f} \\
\frac{1}{v}+\frac{1}{-8}=\frac{1}{-12} \\
\frac{1}{v}=\frac{1}{8}-\frac{1}{12}=\frac{3}{24}-\frac{2}{24} \\
\frac{1}{v}=\frac{1}{24} \\
T V=24 \mathrm{~cm}
\end{gathered}
$$

Q) There is a convex mirror of radius 50 cm . The image of a point at a distance 50 cm from the pole of mirror on its axis will be formed at:
(a) infinity
(b) pole
(c) focus
(d) 16.67 cm benind the mirror

Ans. d

$$
\begin{aligned}
& f=\frac{R}{2}=\frac{50}{2}=25 \mathrm{~cm} \\
& \frac{1}{v}+\frac{1}{u}=\frac{1}{f} \\
& \frac{1}{v}+\frac{1}{-50}=\frac{1}{25} \\
& \frac{1}{v}=\frac{1}{25}+\frac{1}{50} \\
& \frac{1}{v}=\frac{3}{50} \\
& v=\frac{50}{3} \mathrm{~cm} \\
& v=16.67 \mathrm{~cm}
\end{aligned}
$$

Q) An object of length 1 cm is placed at a distance of 15 cm from a concave mirror of focal length 10 cm . The nature and size of the image are
(a) real, inverted, 1.0 cm
(b) real, inverted, 2.0 cm
(c) virtual, erect, 0.5 cm
(d) virtual, erect, 1.0 cm

Ans. b

$$
\begin{aligned}
& -15 \mathrm{~cm} \text {. } \\
& \frac{1}{v}+\frac{1}{u}=\frac{1}{f} \\
& \frac{1}{v}+\frac{1}{-15}=\frac{1}{-10} \\
& f=-10 \mathrm{~cm} \quad \frac{1}{V}=\frac{1}{-10}+\frac{1}{15} \\
& \text { Now, } m=\frac{-v}{u} \\
& m=-\left(\frac{-30}{-15}\right) \\
& \frac{1}{v}=-\frac{3}{30}+\frac{2}{30} \\
& V=-30 c m /(R \cdot I) \\
& (\because V=-V e) \\
& \left.\frac{i m=-2}{(\text { Inverted and) }} \frac{h_{I}}{h_{0}} \right\rvert\,=2 \Rightarrow h_{I}=2 \mathrm{~cm}
\end{aligned}
$$

```
Qunacademy
```

Q) The relation between the linear magnification m, the object distance u and the focal length f for a spherical mirror is
(a) $m=\frac{f-u}{f}$
(c) $m=\frac{f+u}{f}$

Ans. b

$$
\begin{aligned}
& m=-\frac{v}{u} \\
\& & \frac{1}{f}=\frac{1}{v}+\frac{1}{u} \\
\Rightarrow & \frac{u}{f}=\frac{u}{v}+1 \\
\Rightarrow & \frac{u}{v}=\frac{u}{f}-1 \Rightarrow \frac{u}{t}=\frac{u-f}{f} \\
\Rightarrow & \frac{v}{u}=\frac{f}{u-f} \Rightarrow \frac{-v}{u}=\frac{f}{f-u} \\
\Rightarrow & m=\frac{-v}{u}=\frac{f}{f-u}
\end{aligned}
$$

```
-unacademy
```

Q) The focal length of a concave mirror is 30 cm . Find the distance of the object from the pole in front of the mirror, so that the image is real and three times the size of the object?
(a) 40 cm
(c) 50 cm

Ans. a

Concave mirror!

$$
\begin{aligned}
& f=-30 \mathrm{~cm} . \\
& |\mathrm{m}|=3
\end{aligned}
$$

for real Image.

$$
\begin{gathered}
m=-3 \\
\frac{-v}{u}=-3 \\
v=3 u \\
\frac{1}{v}+\frac{1}{u}=\frac{1}{7} \\
\frac{1}{3 u}+\frac{1}{u}=\frac{1}{30} \\
\frac{4}{3 u}=-\frac{1}{30} \\
\frac{3 u}{4}=-30 \\
\frac{4}{4}=-40 \mathrm{~cm} \\
\prod u l=40 \times m
\end{gathered}
$$

```
Qunacademy
```

Q) A Convex mirror of focal length f forms an image which is $\frac{1}{n}$ times the object. The distance of the object from the mirror is:
(a) $(n-1) f$
(c) $\frac{(n+1)}{n} f$

Ans. a

Socal length $=f$

$$
\begin{aligned}
m & =\frac{1}{n} \\
-\frac{v}{u} & =\frac{1}{n} \\
v & =-\frac{u}{n}
\end{aligned}
$$

\Rightarrow Now

$$
\begin{gathered}
\frac{1}{v}+\frac{1}{u}=\frac{1}{f} \\
\frac{1}{\left(\frac{-u}{n}\right)}+\frac{1}{u}=\frac{1}{f} \\
\frac{-n}{u}+\frac{1}{u}=\frac{1}{f} \\
\frac{1-n}{u}=\frac{1}{f} \\
u=(1-n) f \\
\begin{aligned}
\text { of } u & =-(n-1) f \\
\text { distonce }=|u| & =|(n-1) f| \\
& =(n-1) f
\end{aligned}
\end{gathered}
$$

Q) The focal length of concave mirror is 50 cm . Where an object be placed in front of the mirror so that its image is two times and inverted?
(a) 70 cm
(c) 75 cm

Ans. c

Concave Mirror: $f=-50 \mathrm{~cm}$ $m=-2 \quad$ (\because inverted image)

$$
\begin{aligned}
& \frac{1}{v}+\frac{1}{u}=\frac{1}{7} \\
& \frac{1}{2 u}+\frac{1}{u}=\frac{1}{-50} \\
& \frac{3}{2 u}=\frac{-1}{50} \Rightarrow\left[\begin{array}{r}
m=-\frac{v}{u}=-2 \\
v=2 u
\end{array}\right] \\
& \mid u=-75 \mathrm{~cm} \\
& |u|=75 \mathrm{~cm}
\end{aligned}
$$

```
Zunacademy
```

Q) An object (0.40 m height) is placed in front of a concave mirror of focal length 0.60 m . A sharp image forms on a screen placed 0.90 m in front of the mirror. What is the height of the image formed by the mirror?
(a) 0.020 m
(c) -0.20 m
(d) 20 m

Ans. c

$$
\begin{aligned}
& f=-0.60 \mathrm{~m} \\
& h_{0}=0.40 \mathrm{~m} \\
& v=-0.90 \mathrm{~m} \\
& \frac{1}{v}+\frac{1}{u}=\frac{1}{f} \\
& \frac{1}{-0.9}+\frac{1}{u}=\frac{1}{-0.6} \\
& \frac{1}{u}=\frac{1}{0.9}-\frac{1}{0.6} \\
& \frac{1}{u}=\frac{0.6-0.9}{0.9 \times 0.6} \\
& u=\frac{0.9 \times 0.6^{2}}{-0.3} \\
& u=-1.8 \mathrm{~m}
\end{aligned}
$$

$$
\begin{array}{r}
T u=-1.8 \mathrm{~m} \\
m=\frac{-v}{u}=\frac{h_{I}}{h_{0}}
\end{array}
$$

$$
h_{I}=-\frac{V}{4} h_{0}
$$

$$
\left.=-\left(\frac{-0.9}{-0.48}\right)+60.40\right)
$$

$$
=-\left(\frac{1}{2}\right)(0.40)
$$

$$
h_{I}=-0.20 \mathrm{~m}
$$

```
-unacademy
```

Q) A candle is placed in front of a convex mirror of focal length 8.0 cm . The mirror forms a virtual image 3.0 cm behind it. Find magnification of the candle's image produced by the mirror?
(a) 0.63
(c) 1

Ans. a

Convex Mirror:

$$
f=+8 \mathrm{~cm}
$$

$$
m=-\frac{v}{u}=+\left(\frac{3}{-24 / 5}\right)
$$

for virtual image

$$
V=+3 \mathrm{~cm} .
$$

$$
m=+\left(\frac{5 \times 3}{248}\right)
$$

$$
\frac{1}{v}+\frac{1}{u}=\frac{1}{f}
$$

$$
\frac{1}{3}+\frac{1}{4}=\frac{1}{8}
$$

$$
\frac{1}{4}=\frac{1}{8}-\frac{1}{3}
$$

$$
\begin{aligned}
& \frac{1}{u}=\frac{3-8}{3 \times 8}=\frac{-5}{3 \times 8} \\
& u=-\frac{24}{5}
\end{aligned}
$$

Q) If a man's face is 30 cm in front of a concave shaving mirror creating an upright image 1.5 times as large as the object, what is the magnitude of mirror's focal length?
(a) 12 cm
(c) 90 cm
(d) 20 cm

Ans. c

Concave Mirrar:

$$
\begin{aligned}
& y=-30 \mathrm{~cm} . \\
& m=+1.5 \\
& -\frac{V}{u}=+1.5 \\
& -v=1.54 \\
& -V=1.5(-30) \\
& V=+45(\mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{v}+\frac{1}{u}=\frac{1}{f} \\
& \frac{1}{f}=\frac{1}{45}+\frac{1}{-30}=\frac{1}{45}-\frac{1}{30} \\
& \frac{1}{f}=\frac{30-45}{30 \times 45}=-\frac{15}{30 \times 45} \\
& f=-\frac{30 \times 45}{15} \\
& f=-90 \mathrm{~cm} \\
& |f|=90 \mathrm{~cm}
\end{aligned}
$$

```
_unacademy
```

Q) A concave mirror having a radius of curvature 40 cm is placed in front of an illuminated point source at a distance of 30 cm from it. Find the location of the image?
(a) 60 cm from the mirror in front of the mirror
(b) 60 cm from the miraor behing the mirror
(c) 30 cm from the mirror on the side of the object
(d) 30 cm from the mirror behind the mirror

Ans. a

Concave Mirror:

$$
\begin{gathered}
|R|=40 \mathrm{~cm} . \\
\therefore f=-20 \mathrm{~cm} . \\
u=-30 \mathrm{~cm} . \\
\frac{1}{v}+\frac{1}{u}=\frac{1}{f} \\
\frac{1}{v}+\frac{1}{-30}=\frac{1}{-20} \\
\frac{1}{v}=\frac{1}{30}-\frac{1}{20}=\frac{2}{60}-\frac{3}{60} \\
\frac{1}{v}=-\frac{1}{60} \\
v=-60 \mathrm{~cm}
\end{gathered}
$$

Image is in front of the mirror j^{e}

Chalo Nikis

